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The equation of state of the hard-sphere fluid is studied by a Monte Carlo- 
molecular dynamics method for volumes ranging from 25 V 0 to 1.6 V 0, where V 0 
is the close-packed volume, and for system sizes from 108 to 4000 particles. The 
N dependence of the equation of state is compared to the theoretical depen- 
dence given by Salsburg for the N P T  ensemble, after correction for the ensem- 
ble difference, in order to obtain estimates for the thermodynamic limit. The 
observed values of the pressure are compared with both the [3/2] and the [2/3] 
Pad~ approximants to the virial series, using Kratky's value for the fifth virial 
coefficient B 5 and choosing B 6 and B 7 to obtain a least-squares fit. The resulting 
values of B 6 and B 7 lie within the uncertainties of the Ree-Hoover-Kratky 
Monte Carlo estimates for these virial coefficients. The values of B 8, B 9, and 
B w predicted by our optimal [3/2] approximant are also reported. Finally, the 
Monte Carlo-molecular dynamics equation of state is compared with a number 
of analytic expressions for the hard-sphere equation of state. 

KEY WORDS: Equation of state; hard spheres, virial series; Monte Carlo; 
molecular dynamics; Pado approximants; N dependence, 

1. INTRODUCTION 

The equation of state of the hard-sphere fluid has been obtained by 
numerical statistical mechanics methods by a number of authors, beginning 
with the pioneering Monte Carlo calculations of Metropolis et al. (~ for 
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systems of N = 256 particles and Wood and Jacobson (2) for N = 32, as well 
as the molecular dynamics calculations of Alder and Wainwright (3) for 
N = 32 and 108. These early results have been reviewed by Wood. (4) More 
extensive Monte Carlo calculations have been reported by Barker and 
Henderson (5~ (for N = 108), who also report results for the pair-correlation 
function. 

With the advent of perturbation theories for fluids (for a review see 
Ref. 6) the importance of detailed and precise results for hard spheres is 
increased by virtue of the role of the hard-sphere system as the reference 
system in most such theories. In addition, the hard-sphere equation of state 
continues to occupy a pivotal role in the developement of both approxi- 
mate and exact equation-of-state theories. Of particular importance in this 
regard are developments based upon the virial series, especially those using 
the Pad~ (7'8) and other (9~ approximant techniques in attempts to extend the 
virial series into the dense-fluid and even the unstable-fluid regimes. These 
developments have led to considerable controversy (for a review see Ref. 
10) with regard to the nature of the singularities of the virial series. 

The numerical methods of Monte Carlo (MC) and molecular dynam- 
ics (MD) which are used to obtain the equation of state yield results only 
for small finite systems. A central problem concerns the extrapolation to 
the thermodynamic limit. In a study of the equation of state of hard disks, 
Wood (m showed that systems as large as 48 particles at high fluid densities 
exhibited an anomalous dependence of the pressure on N, so that larger 
systems needed to be studied in order to estimate the thermodynamic limit 
accurately. It is our purpose here to study the hard-sphere equation of state 
in similar detail. 

Our results for the equation of state differ from previous estimates in 
two respects. First, they are statistically more precise because of the 
extreme length of many of our calculations, 3 having statistical uncertainties 
at least an order of magnitude smaller than earlier results. Secondly, our 
values of the pressure take into account the correct dependence on system 
size, both theoretically and through the evaluation of the pressure for much 
larger system sizes than previously investigated. 

We compare our estimates of the equation of state with the predictions 
of the virial series, using for the latter several Pad6 approximants which 
depend on virial coefficients up to B 7. The values of B 1 through B 4 a r e  

known exactly, and B 5 has been accurately estimated by Kratky (8~ using 
Monte Carlo evaluation of the Mayer and Mayer-Montroll graphs, im- 
proving on the accuracy of the earlier estimates by Ree and Hoover. (7) The 

3 These long calculations are carried out in connection with the estimation of the super- 
Burnett coefficient O2) and the time-correlation function for shear viscosity. (13) 
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coefficients B 6 and B 7 were estimated by Ree and Hoover (7) by Monte 
Carlo evaluation of the modified Mayer graphs (Ree-Hoover  graphs). 
Kratky (s) has recently reassessed the accuracy of these estimates. We find 
small but significant discrepancies between our numerical results and the 
equation of state as estimated by the Pad6 approximants which are avail- 
able from knowledge of these virial coefficients when we use the "best" 
values given by Kratky. However, by adjusting B 6 and B 7 for optimal 
agreement of these approximants with our results, we obtain satisfactory 
statistical concordance as well as values of B 6 and B 7 which lie within 
Kratky's estimates of the error bounds. In addition, reexpansion of our 
optimal approximant into a virial series gives values of B 8 through B~0 
which are similar to various estimates given by Kratky. 

In Section 2 we describe our numerical method, and in Section 3 we 
discuss our results for finite systems. The extrapolation to the thermody- 
namic limit and the related fitting of our results to the virial series are 
presented in Section 4. In Section 5 we compare our equation of state to 
various analytic results. 

2. M E T H O D  

We consider a system of N classical particles, each of mass m in 
volume V, subject to periodic boundary conditions. (4) If we denote the 
positions and velocities of the particles by x N = (r N, v N) in which (v = (rl, 
r 2 . . . . .  rN) and v N =  (vl,v 2 . . . . .  VN) , then it has been shown (14) that the 
dynamical pressure PMD is given through the compressibility factor, 

pMD V 
Z M D -  - -  1 - -  ( ] )  NkB TMD ^ 

K 

where k s is the Boltzmann constant, and ff denotes the long-time average 
of a phase function F(xU). 

P = lira P ( 0  
l--> oo 

P(t) = 7 

(2) 

In writing the phase xN(/) as a function of the time, we shall follow the 
"infinite checkerboard ''(~4) definition whereby ri(t) is the integral of the 
velocity and thus will not necessarily lie in the primary cell other than at 
t = 0. In addition, /s is the kinetic energy in the center-of-mass frame of 
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reference, 

/~(v ~v) = K(v N) - M2/2rnN 

N 

K(v N) = (m/2)  ~] v~ (3) 
i = l  

N 

M(v N) = m ~,, v i 
i = l  

W(r N) is the virial function, which for pair interactions u(r) and periodic 
boundary conditions is 

W(rN) = - �89 ~ Z '  (r~ + vL). V(r,: + vL) 
v j<~i 

r 0. = r i -- rj (4) 

du(r) 
F(r) = dr 

and TMD denotes the molecular dynamics temperature, 

"7- 
TMD = 2K/3kBN (5) 

Finally, M is the total linear momentum and L = V 1/3 denotes the length 
of the periodic cell which we have taken to be cubic in all the numerical 
calculations. Thus the v sum in Eq. (4), defined as the sum over triples of 
signed integers, 

2 = 2 2 2  
v /)l P2 P3 

includes interactions between each particle i and both j and the various 
images of j .  The prime on the i, j sum denotes that the "self-term" i = j is 
omitted for v = 0. 

For the impulsive hard-sphere interaction, the kinetic energy is equal 
to the total energy E(v N) and both the total energy and the energy in the 
center-of-mass frame of reference, 

= E -  M2/2mN (6) 

are constants of the motion, because of the conservation of linear momen- 
tum in the absence of external forces. Moreover, the time-averaged virial 
reduces to a sum over collisions, 

c(t) 
W(t) = m ~ crij(tv). Avi(tv) (7) 

2t v=l 

where c(t) is the number of collisions up to time t, ~r~ is the line-of-centers 
vector for the colliding pair i = i(7) a n d j  = j ( 7 )  (with I%[ = o, the hard- 
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sphere diameter), and mu the change in velocity of particle i on the ~,th 
collision. 

The relation of the dynamical pressure to that for the canonical (NVT)  
ensemble is, for hard spheres, (14) 

ZNV T - -  1 - N -  1 (ZMD_ 1) 
N 

PNVT V (8) 
ZNVT - -  N k  B T 

In the next section, we report values for ZNV T for the N V T  ensemble. 
Our dynamical calculations consist not of a single trajectory as is 

common in molecular dynamics; instead a number of trajectories are 
generated, with the initial phase xN(0) sampled via the ordinary Metropolis 
Monte Carlo method (4) from either the microcanonical (NVE)  ensemble or 
the molecular dynamics ( N V E M )  ensemble. Our use of a combination of 
Monte Carlo and molecular dynamics (MCMD) permits a number of ways 
of computing the pressure and we present results for the methods which 
appear to yield the smallest statistical unce__rtainty; In particular, we form 
the Monte Carlo average of the quantity W( t f ) /E  in which tf denotes the 
final time to which each trajectory is generated. We proceed by relating this 
to the N V T  ensemble pressure. 

For this purpose, we compute the expectation value of this quantity in 
the N V E  ensemble. Using Liouville's theorem, we readily show that (W(t)  
/E~NvE is independent of t. Then using W from Eq. (7), we find for t 
sufficiently small that the first collision need only by taken into account, 

_ m (tr,2 �9 v,zA (t - t~'2))/E)N w (9) ( W ( t ) / E ~ N v e  4 N ( N -  1)t 

where t~12~ denotes the time of the first collision between particles 1 and 2 
and where A (x) is the unit-step function. By introducing relative coordi- 
nates r12 and introducing the pair-correlation guv(r~2) by integrating over 
the coordinates of particles 2, 3 . . . . .  N, we obtain 

( W ( t ) / E ) N v E  = -- ~mnZa3VgNv(O)(V22/E)NvE (10) 

The average (vZ2/E)NvE can be evaluated explicitly by following the 
methods given in Ref. 14; we obtain 

2 " m(Vlz /E)NvE = 4 / ( N  -- 1) (11) 

Substituting into Eq. (10) and introducing the pressure in the N V E  ensem- 
ble through its well-known relationship to the pair-correlation function at 
contact, (4) we obtain 

( 1 )(  ~(t)/~)NVE (12) ZNVT = 1 -- 1 -- 
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Thus our Monte Carlo-molecular dynamics estimates for (W(t)/E)NvE 
yield estimates for the NVT ensemble equation of state. 

For our calculations in the molecular dynamics ensemble (NVEM), 
the expectation value of W(t)/E simplifies because /~ is fixed (i.e., 
independent_ of  trajectory). It is readily shown that (W(t)/~)/vve M = 
(W(t))NVeM/E, independently of t, whence it reduces to W/E. Thus, by 
Eqs. (1) and (2), 

E 

Depending on the ensemble, then, we use either Eq. (12) or Eq. (13) to 
compute our estimates for the compressibility factor for the NVT ensemble. 
We refer to these estimates as the MCMD equation of state. 

An additional method for computing the equation of state in a 
dynamical calculation is based on the collision rate, (14) 

(2~/2)~rA 
ZMD--- 1 + 3~_a(N)A0(m) "r-- V / V  o 

(14) 
(3N/2)i/zF[3(N- 1 ) / 2 ] ( 1 -  1/U) 

a ( N )  = I ? [ ( 3 ( N -  1) + 1)/2] 

1 - 5 /12N + O(N-Z) 

where V 0 = (~/2/2)No 3 is the close-packed volume, I'(x) is the gamma 
function, A is the collision rate, and A0(m ) is the Boltzmann collision rate 
in the large-system limit, 

N 
A~ - 2 too 

too = 4o2n 

3MD = 1/kBTMD 
Note that too is the Boltzmann mean free time in the large-system limit. We 
have applied the collision-rate method only in the molecular dynamics 
ensemble. 

3. RESULTS 

Monte Carlo-molecular dynamics calculations of the equation of state 
have been made for ten values of the volume, relative to the close-packed 
volume V0, shown in Table I, for as many as four different system sizes, 
ranging from N -- 108 to N -- 4000. The values of ZNv r obtained from the 
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Table I. Hard-Sphere Equation of State from Monte Carlo-Molecular 
Dynamics Calculations" 

ZNVT 

N e Nmc N, N C 9 / t ~  ) from W(r u)  from A X 2 

25 4000 1 30 50 17 
18 4000 1 30 73 26 
l0 500 1 30 150 11 

4000 1 30 98 38 
5 108 1 30 100 6 

500 1 30 200 12 
500 1 30 100 6 

2 

1.8 
1.7 
1.6 

4000 1 30 50 24 
108 1 30 100 13 

1372 1 30 50 12 
108 2 200 100 45 
500 2 200 105 108 

1372 1 100 31 4 
4000 1 50 99 65 
4000 2 50 100 74 

108 1 200 72 1 
500 1 200 32 3 

1372 1 100 15 3 
4000 1 30 50 52 
4000 1 50 50/42 63/53 
4000 1 100 88/82 49/46  

108 2 200 88 71 
500 2 200 72 72 
500 2 200 16 16 

4000 1 100 100 / 9064 / 58  

4000 2 500 100/97 79/77  

160 1.12777 -+ 0.00003 2.7 
160 1.18282 _+ 0.00005 0.2 
240 1.35881 _+ 0.00011 0.1 

60 1.35939 _+ 0.00007 0.3 
720 1.88374 + 0.00050 1.1 
160 1.88729 _+ 0.00027 
160 1.88769 ___ 0.00042 

1.88742 _+ 0.00023 0.1 b 
160 1.88839 _+ 0.00022 0.1 

1440 2.23797 _+ 0.00033 0.5 
200 2.24356 -+ 0.00036 0.5 

4000 3.02250_+ 0.00032 3.02252 _+ 0.00031 1.0 
2000 3.02964 _+ 0.00022 3.02975 +_ 0.00016 0.3 

100 3.03225 _+ 0.00095 1.8 
160 3.03065 _+ 0.00030 
180 3.03162_+ 0.00028 3.03146_+ 0.00022 

3.03114 _+ 0.00021 2.1 b 
100 5.82774 _+ 0.00486 
100 5.85068 _+ 0.00323 1.4 
100 5.85641 _+ 0.00380 0.4 
160 5.85016 _+_ 0.00085 0.4 
160 7.43040 _+ 0.00127 0.2 c 
64 8.60034 _+ 0.00128 0.0 C 

3000 10.08822 _+ 0.00160 10.08813 _+ 0.00154 
800 10.19368 + 0.00150 10.19286 +_ 0.00149 
800 10.19395 + 0.00281 

10.19373 _+ 0.00132 2.5 b 
64 10.19203 + 0.00171 Foot- 

note c 
80 10.19525 _+ 0.00125 10.19810_+ 0.00131 Foot- 

note c 
10.19388 _+ 0.00102 2.0 C 

aE denotes the ensemble, 1 for the NVE ensemble and 2 for N V E M  ensemble, Nmc is the 
number  of at tempted Monte Carlo moves per particle between each of the initial configura- 
tions of the N t trajectories. N C is the total number  of collisions over all trajectories, in millions. 
rwiS the final time on the M D  trajectories in units of the Boltzmann mean free time t ~  ). 

eighted mean  of the preceding two values. 
CEarly trajectories were omitted to eliminate the effects of solidlike initial configurations. The 
actual number  of trajectories and collisions which enter the reported values of Z~vvr are given 
after the solidus. 
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virial reported in Table I have been corrected to the N V T  ensemble 
through either Eq. (12) or (13), depending on which ensemble was used. 
The length of each trajectory is listed in the table in units of the Boltzmann 
mean free time for the NVE ensemble, 

t ( N )  _ N 
oo N -  1 too 

The Monte Carlo procedure used the so-called "cyclical" move pre- 
scription, in which each one of N - 1 particles is given a trial displacement 
in cyclic order, beginning from the face-centered cubic (fcc) configuration. 
A number of attempted moves per particle, Nine, was made in proceeding 
from the initial configuration for one trajectory to the initial configuration 
for the next trajectory. The initial velocities for each trajectory were 
selected from the appropriate distribution by an independent-trials 
method. 4 In choosing Nmc , it was intended that the values of the pressure 
would be essentially independent from trajectory to trajectory. Standard 
statistical procedures to test that hypothesis were used and found for the 
most part to be adequately satisfied. In several cases it was necessary to 
coarse-grain the results from two successive trajectories to satisfy these 
tests. At high density it was found that a number of the early trajectories 
appeared to yield low values for the pressure, indicating that an insufficient 
number of Monte Carlo moves had been taken to permit the fcc structure 
to melt. In these cases, the results for these early trajectories were omitted 
from the calculation of the reported pressure. 

For the N V E M  ensemble calculations, we have also used the collision 
rate to estimate the pressure, through Eqs. (8) and (14). These results are 
also shown in Table I. The agreement of these values of the pressure lends 
added credence to the adequacy of the present calculations in sampling 
phase space. 

4. T H E R M O D Y N A M I C  L IMIT  

To extrapolate our equation of state to thermodynamic limit, we recall 
the known N dependence for the N P T  ensemble derived by Salsburg, (16) 

pVNPr -- ~ Ci(N)p i (16) 
ZNeV-- NkBT i=0 

4 We use the Box-Muller (15) method to select velocities from the Maxwell-Boltzmann 
distribution. For the NVE ensemble, we rescale the resultant velocities to obtain the given 
energy. For the NVEM ensemble, we rescale the velocities in the center-of-mass frame of 
reference to obtain the given E. 
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with coefficients C~(N) which are exactly linear in 1/N for i < N, 

C,(N) = C, (~ + C,(')/N (17) 

provided one neglects terms of exponential order in N. Moreover, the C~ (~) 
are known in terms of the Cj (~ fo r j  < i, which, in turn, are known in terms 
of the ordinary virial (density) coefficients Bk, k < j .  Thus for N and p 
such that N terms of Eq. (16) are adequate to represent the equation of 
state, we write 

ZNp v = Z io) + Z(N~r/N 

z (o)  = ~ ,  c~(~ ~ 
i=0 

Z(I)NPT = ~ C'(i)~ i 
i = 0  

(18) 

in which Z (~ is the compressibility factor in the thermodynamic limit. 
To obtain the dependence of the NVT ensemble pressure on N from 

the NPT ensemble result, we recall the well-known relationship, (11) 

flPNVT ( V) = tip + -~v PNPT ( V) (19) 

where PNPT(V) is the distribution function for the (fluctuating) volume 
which for hard spheres is 

QN(V)e-/~P v 
PN,'T (V) = ~N(BP) 

QN( V) = ; / r N  BN(r N) (20) 

A,~( BP) = fo=dV e-~*VQ.( V) 

in which BN(1 ~ )  is the overlap function (equal to 1 unless [r12 ] < a for some 
i, j pair, in which case it vanishes). At the maximum v(") of the distribu- �9 NPT 
tion function, then, we see that Eq. (19) reduces to 

pNv~[ ,~(~) 7 ,  N~J = p (21) 
Assuming that PNeT(V) is unimodal, we show in the Appendix [see also Eq. 
(8.8) of the first paper of Ref. 11] that the transformation between the two 
ensembles, to leading order in l /N ,  is 

~ N v T ( ~ T ) = ~ +  1 a ~ N ~ T ( d ~ )  -~ -~) 2N ~ \ ~ + O(W (22) 
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where ~ is the reduced pressure, 

= p V o / N k  B T 

~PNVT ('r) = PNVr ('C) Vo/ Nk B r 

and where the derivatives on the right-hand side are to be evaluated at the 
N P T  ensemble expectation value, "rNp r. Dividing the Salsburg relation Eq. 
(18) by ~, we obtain 

"rNe r (~) = "r(~ + T(Ule)r (ep)/N (23) 

where ~_(o)(q~) is the infinite-system reduced volume as a function of 
reduced pressure. Substituting Eq. (23) into Eq. (22), we obtain 

ZNV r ('Q = Z!  ~ + ZOr r (~c)/N + O ( N - 2 )  (24) 

in which 

Z(,) ~ "  = _ ~.~.~T[,r d,~U~.T ~- d % v  T [ d ~  ) - '  
u v r t  ) T + 2 d,r 2 \ dl" (25) 

In Eqs. (24) and (25), we have written ~- in place of ~.(o) and the argument 
tp (~ (,r) of T(u~e)r is again obtained from the infinite-system equation of state. 
The derivatives are now evaluated at ~-. 

To obtain the thermodynamic limit Z (~ from ZNVr, as reported in 
Section 3, we obtain Z (1) from Eq. (25), using for ePNvr (on the right) one of 
the familiar Pad6 approximants to the density series, 

xPp(x) 
7 ( 0 )  = 1 "}" - -  

"-'p/q Qq(X) 

P 

= 1 + E . ? r e x ,  
i =1  

q ( 2 6 )  

Qq(x) = 1 + E b~ p/qlxi 
i = 1  

~r (2~/2) 
X - -  - -  

3r 

in which we follow the usual practice (17) of designating by [p/q] an 
approximant which has degrees p and q for the numerator and denomina- 
tor, respectively. The r (b contribution can also be written as a Pad6 
approximant (with x as argument) by substituting the virial series for the 
pressure into the pressure series, Eq. (16), and rearranging terms, yielding 
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the Pad6 approximant, 

- 1 - x e r i c ( x )  

P/q Qq(~)(x) 

P 
P~')(x)  = 1 + ~ a[e/qlx i (27) 

i = 1  

q 

Qq(1)(x) = 1 + ~,  ]~i[P/q]x ' 
i = 1  

To evaluate the theoretical equation of state, Eq. (24), we use the [2/2] 
approximant of Kratky (8) [also called the Pad6 (3 • 3) or P(3, 3)] for Z (~ 
We form the r(2~)2 approximant, based on the same virial coefficients 
B 1 - B 6 and t h e  Ci(I)(N) of Salsburg, (16~ to get the a] 2/2] a n d  /~i[2/21. From 
these we compute the theoretical equation of state (24) which we compare 
with our MCMD results in Figs. 1-6 for reduced volumes, r = 10, 5, 4, 3, 2, 
and 1.6 for which at least two different system sizes were investigated. We 
note that for the lowest densities, Figs. 1-3, the agreement appears quite 

I 

Z 

g 
I I I I 

~ 3- 10.0 
o 
g_ 
cd 

cd 

t O -  
cd 

u o  

~4 

o 

cd 

i I I I 

0.000 0.002 0.004 0.006 0.008 0.010 

VN 

Fig. 1. The equation of state of the hard-sphere fluid at a volume V = 10V 0 as a function of 
system size. The solid line is the theoretical Eq. (24), based on the Kratky [2 /2]  Pad~ 
approximant. The dashed line is based on the optimal [3/2] approximant, but is indistinguish- 
able from the solid line except at higher density. 
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g 
~6 

cO 
cO 

r 
b-, 

z ~z 

- o K  

L 

g 

~ v 

0.000 0.002 

L L 
"T 5.0 

i 
0.004 0.006 0008  0.010 

1/N 

Fig. 2. Same as Fig. 1, for V = 5 V  0. 

satisfactory. At ~" = 3, Fig. 4, there appears to be a marginally significant 
deviation from the theory for the very accurate N = 4000 point. This 
difference is amplified at ~- = 2 (Fig. 5) and "r = 1.6 (Fig. 6). Moreover, for 
~-= 1.6, one can see that the three points differ significantly from any 
straight line. It would appear that either the N -  2 term in Eq. (24) becomes 
important here or that the exponential terms in N contribute appreciably to 

I 

Z 

L'~ --  - - L  I 

e ~  

g 
,..-i 

I 

0.000 0.002 
I I I 

0 0 0 4  0.006 0 0 0 8  O.OlO 

~/N 

Fig. 3. Same as Fig. 1, for V = 4 V  o. 
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I 

z 

o 
c~ 

o -  

o -  
0,i 

o -  

o -  

o -  
c4 

o 
c~ 

1 I _ _  t _ _  

T 

0.000 0.002 

" f =  3.0 

I I 

0 .004  0 . 0 0 6  
J 

0 . 0 0 8  0.010 

Fig. 4. Same as Fig. 1, for V = 3 V  0. 

the NPT ensemble pressure. In any case, because the MCMD and the 
theoretical 1/N slopes seem to be at least in qualitative agreement for large 
N and for all densities, we can crudely extrapolate to the infinite system by 
simply subtracting Z ~1)/N from the largest system results in Table I. 

A better procedure is to fit the MCMD data to the theoretical Eq. (24) 
by rewriting the latter in terms of Pad6 approximants in which the sixth 

I 

2~ 
;z  

T =  2. 

o- ' - ' - -_  

i I I I 

0 . 0 0 0  0 .002  0 . 0 0 4  0 . 0 0 6  0 . 0 0 8  0 .010  

1/N 

Fig. 5. Same as Fig. l, for V = 2 V  0. 
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u-~ 

L i o~ T =  1.6 

g g . . . . . . . . . . . . . . . . . . . . . .  

g l  . ~ 

0.000 0.002 0 .004  0.006 0.008 0.010 

1/N 

Fig. 6. Same as Fig. 1, for V = 1 . 6 V  0. 

and seventh virial coefficients appear as parameters. The known Monte 
Carlo estimates for B 6 and B 7 contain sizeable uncertainties, (8) 

B6/B 5 - -  0.0389 + E 6 

E 6 = 0.004 
(28) 

B7/B 6 = 0.0137 + E 7 

E 7 = 0 . 0 0 6  

If we write 

B61BS2 = 0.0389 + f6E6 
(29) 

B7/B62 = 0.0137 + fTEv 

then we define the parametric form of Eq. (24), 

Zp/q(,r,U; f6, /7) -- Z(~ 7( ' )  "r" (30) p/q(~; t6, fT) + "-'p/qt , f6, iv)~ s 

in which the coefficients a~p/ql and blP/ql of Zp(~, Eq. (26), and the 
coefficients a~p/ql and fli Lp/ql of l-p())q, Eq. (27), are based on the known 

values of B~ through B4, Kratky's (s) precise Monte Carlo estimate for B 5 
(0.110252B4), and the values of B 6 and B 7 from Eq. (29). If we denote the 
MCMD values by Z(,c,N) with standard deviations s(T,N) as given in 
Table I, then the quantity, 

X~/q(f6 f 7 ) = 2 2  2 . , Xp/q(T, N, f6, f7) 
-r N 

2 . [ Z( ' r ,N)  - Ze/q('r,N; f6 
Xp/q('C, N, f6, /7) = [ s ( r , N )  

(31) 
~fv )  12 



Molecular Dynamics Calculations of the Hard-Sphere Equation of State 335 

in which the r and N sums run over the available entries, Table I, 
represents the goodness of fit for given f6 and f7. Thus, 2 X~/q(f6, f7) can be 
minimized with respect to its parameters in a nonlinear least-squares 
procedure. We label the resultant values of the parameters by if6 and f t .  
Under the hypothesis that the MCMD data are samples from a normal 
distribution with mean given by Eq. (30), the statistic X~/q (~ , f i )  is 
expected to have the X 2 distribution. 

In the first instance, we attempted to fit only f6 by using the [2/2] 
approximant which is independent of B 7. The optimum fit, however, 
showed a large, statistically significant value for X 2. Instead, then, we use 
both the [3/2] and the [2/3] approximants, performing the nonlinear 
least-squares for each choice. These approximants depend on the virial 
coefficients through B 7 and lie near the p = q "diagonal" for which the 
Pad6 approximants are believed to be best in improving the convergence of 
the virial series. 

In performing the least squares, we do not include the N = 108, r = 1.6 
point inasmuch as it appears from Fig. 6 to lie outside the range of validity 
of the 1 / N  "correction." The point at N = 108, r = 2 is somewhat more 
problematic; see Fig. 5. As a result we perform the least-squares analysis 
both including this point (yielding 19 degrees of freedom, v, for the 
optimum fit) and excluding it (v -- 18). The results of this analysis for both 
the [3/2] and the [2/3] cases are given in Table II. The column labeled 
P(X 2, u) is the cumulative distribution at the observed value of the X 2 at the 
optimum fit. 

As an optimal choice, we select the [3/2] approximant with ~ = 
0.2394 and f i  -- 1.0556. These values yield estimates for B 6 and B 7 which 
are in adequate agreement with the Monte Carlo estimates, Eq. (29). The 
coefficients of the optimal [3/2] approximant are given in Table III. The 
contributions X23/2($,N;J'~,f*77), Eq. (31), to X 2 from each individual 
MCMD datum are tabulated in Table I in the column labeled X 2. It is 
notable that the principal contributions to the overall X 2 statistic arise from 
the r - - 2 5  and r - -  1.6 data, along with the N- -4000 ,  r = 3 point. While 
none of these deviations is as large as two standard deviations, there is 

Table II. Least-Square Fit of Pad(~ Approximants to 
MCMD Equation of State 

[P/q] F66 f~ v X 2 P(X 2, v) 

2/3 0.2730 - 1.0670 18 17.8 0.5 
0.2510 - 1.0737 19 20.7 0.6 

3/2 0.2394 - 1.0556 18 17.4 0.5 
0.2227 - 1.0622 19 20.2 0.6 
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Table III. Coefficients for the Optimal [3/2] Pad(~ Approximant for 
the Hard-Sphere Equation of State 

i l 2 3 

a] 3/21 0.0556782 0.01394451 - 0.00133996 
bp/2] - -  0.056943218 0.08289011 

perhaps some suggestion that the highest-density data signal the outset of 
systematic deviations from the [3/2] representation. Finally, the optimal 
N-dependent representation, 

Z*(r ,N)  = ZS(r ) + Z t ( r ) / U  
(32) 

Z* (r) -- Z3~z(r; 0.2394, - 1.0556) 

is plotted as a dashed line in Figs. 1-6. 
The uncertainties of our estimates of B 6 and B 7 a r e  difficult to assess 

accurately. While one could readily obtain the ellipse in the f6, f7 plane on 
which X 2 attains the 95 percentile level, it seems virtually certain that 
systematic deviations in the [3/2] (or [2/3]) Pad6 approximant from the 
true equation of state are more important than any statistical uncertainty in 
our data. A better estimate of the uncertainty in B 6 and B v is provided by 
the variation among the values given in Table II. 

We can also compute the virial coefficients B,, n > 7, from our opti- 
mal approximant. We obtain for Bn/B ~- l 0.00421, 0.00131, and 0.00040 
for n = 8, 9, and 10, respectively. These values are close to a number of the 
approximate values given by Kratky38) In particular, they differ from the 
Carnahan-Starling values only in the last digit. 

It is perhaps worthwhile to take note of the attempts (9're'iS) to base 
approximants on the supposition that the virial series should diverge at 
some high density, for example, the close-packed volume r = 1 or the 
random-dense-packed volume r ~  1.16. While the Kratky [2/2] approxi- 
mant has a pair of singularities at densities above the close-packed lattice 
density, it is also true that a number of different approximants, based on 
these same Ree-Hoover-Kratky virial coefficients, including the [2/3] and 
the [3/2] approximants, in fact have real singularities with ~- near the 
random close packing. (19) Nonetheless, when we recompute these 
approximants using our fitted values of B 6 and B 7 (based on fitting either 
the [3/2] or the [2/3] approximant), we find that the [3/2] and the [2/3] 
approximants, in addition to the [2/2], now have singularities with Irl < 1 
and well removed from the random close packed point. It seems, therefore, 
that the virial coefficients are not known with sufficient precision to locate 
the singularities of the virial series. 
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5. COMPARISON WITH ANALYTIC EQUATIONS 

A large number of theoretical and phenomenological equations have 
been proposed for the hard-sphere equation of state. We have compared 
our infinite-system representation Z~0-) with many of these, including the 
Carnahan-Starling (2~ equation, the Percus-Yevick (21) "compressibility" 
equation, the Ree-Hoover (7) and the Kratky (8) [2/2] Pad6 approximants, 
the equations proposed by Woodcock, (22~ by Andrews, (23~ and by 
Speedy, (24) the empirical equation of Devore and Schneider, (18) and the 
equation recently proposed by Shinomoto. (25) We also compare our results 
with the Levin and Tova approximants obtained by Baram and Luban. (9) 
These comparisons are shown in Fig. 7a, in which we plot the difference, 

d i Z O  ) = Z ( ' r )  - Z~ ( ' r )  (33) 
over the entire fluid range, with Z(r) given by one of these analytic 
representations. Also shown on the figure are the MCMD data in the form 
of Z(T, 4000) - Z~O-)/N, i.e., the 4000-particle observed equation of state, 
extrapolated to the thermodynamic limit via the optimal Pad6 approxi- 
mant. 

None of these relations agree with the MCMD results except at low 
density. The Devore-Schneider equation, which does not yield correct 
values for the virial coefficients, disagrees with the data even at low density. 
The Levin and Tova approximants shown are those of degree 6; those of 
degree 5 and 7 fit the data similarly. It is interesting that the Kratky [2/2] 
Pad6 approximant and the equation of Speedy appear to be the most 
accurate among these representations. 

In Fig. 7b we show a similar plot, but displaying a number of 
approximants which are based on our adjusted values of B 6 and BT, in 
addition to the Speedy and Kratky curves. The Tova approximant of 
degree 6 obtained from our modified virial coefficients is labeled Tova(*). 
The modified [2/2] Pad6 approximant is also shown, labeled [2/2]*. The 
modified Levin approximant of degree 6 is labeled Levin(*). It is notable 
that all three of these representations appear to suffer as approximations to 
the data compared to those based on the unmodified Ree-Hoover-Kratky 
sixth virial coefficient. However, the [2/3] Pad~ approximant based on our 
optimal values, viz., if6 = 0.2394, if7 = - 1.0556, (and not itself fitted to the 
data) is labeled [2/3]* in Fig. 7b. It is seen to fit the MCMD data more 
accurately than any other representation not fit to the data, i.e., other than 
our optimal [3/2] or [2/3] representations. This agreement would appear to 
indicate that the current estimates for the sixth and seventh virial coeffi- 
cients are, in fact, more accurate than the Ree-Hoover-Kratky values; a 
proof that this is so is not possible from such an indirect method of 
calculation. 
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Fig. 7. The difference, Eq. (33), between the optimal [3/2] Padfi approximant  and  various 
analytic equations. The points are N = 4000 M C M D  results, extrapolated to the thermody-  
namic limit. In (a): Carnahan-S ta r l ing  ( - - ) ,  Percus-Yevick  compressibility (---), Shinomoto 
( . . . . .  ), R e e - H o o v e r  ( . . . . . . .  ), Devore -Schne ide r  ( . . . . . . . . .  ), Kratky ( . . . . . .  ), Speedy 
( - - - ) ,  Woodcock  ( . . . .  ), Andrews  ( . . . . .  ), B a r a m - L u b a n  (Levin) ( . . . . . .  ) and (Tova) ( . -  - ). 
In (b): Kratky (-) ,  Speedy (---), Tova(*) (---), Levin(*) ( . . . .  ), [2/2]* ( . . . . .  ), and  [2/3]* 
( . . . . . .  ). 
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It should perhaps be pointed out that the Levin and Tova approxi- 
mants could be fitted to our data in the same manner as the Pad6 
approximants, by adjusting the values of B 6 and B 7. It would be interesting 
to see whether an equally accurate representation would be obtained and 
the adjusted virial coefficients would agree with the current values. 
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APPENDIX 

In this appendix we derive the relation between the N P T  and N V T  
ensemble equation of state to the leading order in 1/N.  We begin with the 
exact relation Eq. (21) and compute the difference 

1 ( "  oo 
- "rm = AN JO d'r('r - rm)f(T ) (A1) 'TNp T 

where %, = v(m) / �9 UPr/Vo and from Eq. (20) on conversion to reduced vari- 
ables, 

f ( r )  = e-U*~QN(r ) ---- e -Nh(') = Puer ( V )  (A2) 

A N = s md'r f ( r )  (a3) 

h(r) = cpr- N-~ln Qjv(r) (a4) 

Because - k s T l n  QN(r) is the free energy in the N V T  ensemble, we see 
that h(r) is finite in the limit of large N, whence f (r)  is expected to be 
peaked near its maximum. Thus we expand h (r) in a power series about rm, 
using 

dQN (r) 1 
%VVT (r) - N dr 

and integrate Eqs. (A1) and (A3) term by term to obtain 

_ 1  d2r [ d~NvT(rm) l - I  
"rNer- rm 2N dr2m aT., + O(N  -2) (A5) 
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Subs t i t u t i ng  ,r m f r o m  Eq.  (A5)  in to  Eq.  (21), we  get  

q ) N V T ( , r N p T ) = ~ +  1 d2OPNVT(Tm) [ dePNVT('rm) ] -1 
2 N  d, c2m d,cm + O ( N - 2 )  (A6)  

F ina l ly ,  we  subs t i tu te  for  % f r o m  Eq.  (A5)  in to  the  r i g h t - h a n d  side of  Eq.  

(A6)  to o b t a i n  Eq.  (22). 
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